J B JOURNÉES DE L'INNOVATION EN BIOLOGIE

Friedewald's formula and direct LDL

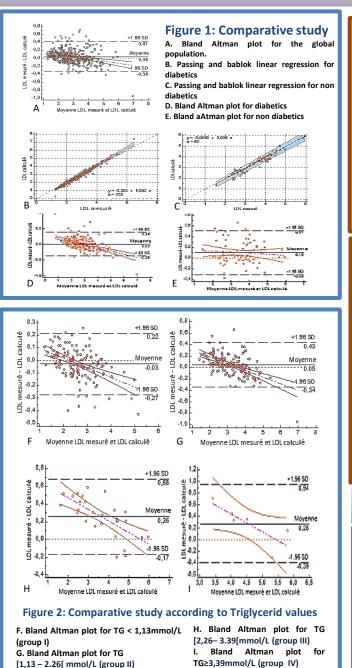
assay: a comparative study

Walid Grouze¹, Sana Hammami², Brahim Khalfa², May Selmi¹, Yasmine Ghannem¹, Malek Ounissi¹, Rahma Mahjoub², EmnaTalbi¹ 1 Clinical Biology Laboratory, Institute Of Nutrition And Food Technology – Tunis (Tunisia) 2 Ur17sp01, Clinical Biology Laboratory, Institute Of Nutrition And Food Technology – Tunis (Tunisia)

Contextualisation

Objectives

LDL-Cholesterol (LDL-C) levels are used to define cardiovascular risk. The determination of LDL-C concentration must therefore be the most exact to assess the cardiovascular risk as accurately as possible and to adapt the treatment.


In this study, we aimed to compare LDL-C calculated (LDLc) results according to Friedewald's formula (FF) with those directly measured (LDLm).

Patients and Methods

Population distribution		Triglycerids (TG) based distribution			Analytical method	Statistical method
Total: 307 patients		TG<1,13 mmol/L TG=[1,13 – 2.26[mmol/L		141 patients 132 patients	 Biological matrix: Heparin plasma. Friedwald's formula: 	 Used software: SPSS Significance threshold: <0,05
LDLm based distribution		TG=[2,26 – 3.39[mmol/L		28 patients		10,05
LDLm<1,4mmol/L	5 Patients	TG≥3,39mmol/L		6 patients	C-LDL (mmol/L) = C. Total - HDL - (TG/2,2)	
LDLm=[1,4-1,8[mmol/L	27 Patients	Diabetes based distribution			- LDL direct assay summarized: Preliminary hydrolysis of most	Statistical tests
LDLm=[1,8-2,6[mmol/L LDLm=[2,6-3[mmol/L	90 Patients 51 Patients	Diabetes	Total	225 patients	serum lipoproteins followed by the double action of a	 -Passing bablock linear regression - Spearman's correlation coefficient - Bland altman plot - Concordance coefficient Kappa (K)
LDLm=[3-4,9[mmol/L	122 Patients		Lipids lowering therapy	152 patients	cholesterol oxydase/esterase couple.	
LDLm≥ 4.9 mmol/L	12 Patients		No lipid lowering therapy	72 Patients	- Chemistry analyzer: Beckman Coulter [®] DXC 700 AU	
	No diabetes		82 patients	Counter DAC 700 A0	-ANOVA analysis	

Results and discussion

The linear correlation between LDLm and LDLc was satisfying, but better within the diabetic population (Spearman coefficient=0,98) than within the non diabetics (Spearman coefficient=0,96). The diabetic patients present however a systematic and proportional bias which is absent in the non diabetics (Figures 1: B and C). The Bland Altman plots denote a statistically significant mean difference of 0,1 mmol/L between LDLm and LDLc within the non diabetic population, the difference is however non significative for the diabetics (p=0,203) (Figure 1: D and E). Choi SY et al. also report a good correlation between LDLm and LDLc but they mention an underestimation of C-LDL using the FF [1].

The mean difference between LDLm and LDLc in the global population was **0,04 mmol/L**, **p=0,0011** (Figure 1A). There is however no global agreement on this topic in the litterature as Ghasemi et al. determined an overestimation of C-LDL by the FF while Nanda et al. concluded to a perfect correlation between LDLm and LDLc [2,3].

The linear regression revealed an underestimation of C-LDL by direct assay increasing with TG concentration.

The different Bland Altman plots show a statistically significant mean difference between LDLc of 0,03; 0,04 and 0,26 mmol/L respectively for group I,II and III. It was however non statistically significant for group IV (0,28 mmol/L), which can be caused by the low number of patients in this group (Figure 2: F,G,H and I). The correlation between LDLm and LDLc is thereafter satisfying when TG<2,26 mmol/L, these resultats are identical to those described by Nanda et al. [3].

The concordance between LDLm and LDLc and cardiovascular risk was evaluated using the Kappa coefficient. Globally, 12,4% of the results were underclassified using the FF. The concordance was better within the diabetic population (κ =0,754) than with non diabetics (κ =0,624). The diabetic patients not undergoing lipid-lowering therapy also showed a better concordance (κ =0,822) than the diabetic patients with lipid lowering medication (κ =0,725). These results are similar to those reported by Choi SY et al. [1].

Conclusion and perspectives

According to our results, diabetes associated with other factors such as triglycerides greater than 2.26 mmol/L or the presence of lipid-lowering treatment, affects FF and leads to errors in classifying patients regarding the cardiovascular risk. However, the absence of a clear consensus in the litterature prevents us from giving a clear critical point of view of the utility of the FF in the estimation of C-LDL. Nonetheless, the direct assay, although more costly, appears more efficient in the long run in determining C-LDL and precisely assessing cardiovascular risk.

References

1] Choi SY, Park HE, Kim MK, Shin CS, Cho SH, Oh BH. Difference between calculated and direct-measured low- density lipoprotein cholesterol in subjects with diabetes mellitus or taking lipid-lowering medications J Clin
.ipidol 2012
2]Ghasemi A, Asgari S, Hadaegh F, Kheirandish M,
Azimzadeh I, Azizi F, et al. New modified Friedewald
ormulae for estimating low-density lipoprotein
cholesterol according to triglyceride levels: extraction
and validation. Endocr. J 2018
Nanda SK, Bharathy M, Dinakaran A, Ray L,
Ravichandran K. Correlation of Friedewald's calculated
ow-density lipoprotein cholesterol levels with direct
owdensity lipoprotein cholesterol levels in a tertiary
care hospital. Int J Appl Basic Med Res 2017;